277 research outputs found

    Probing the dark matter profile of hot clusters and the M-T relation with XMM-Newton

    Full text link
    We present results based on XMM-Newton observations of a small sample of hot galaxy clusters. Making a full use of XMM-Newton's spectro-imaging capabilities, we have extracted the radial temperature profile and gas density profile, and with this information, calculated the total mass profile of each cluster (under the assumption of hydrostatic equilibrium and spherical symmetry). Comparing the individual scaled total mass profiles, we have probed the Universality of rich cluster mass profiles over a wide range of radii (from 0.01 to 0.7 the virial radius). We have also tested the shape of cluster mass profiles by comparing with the predicted profiles from numerical simulations of hierarchical structure formation. We also derived the local mass-temperature (M-T) scaling relation over a range of temperature going from 4 to 9 keV, that we compare with theoretical predictions.Comment: 7 pages, 2 figures, Advances in Space Research in press (proceedings of the COSPAR 2004 Assembly, Paris

    Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS)

    Get PDF
    We examine the X-ray luminosity scaling relations of 31 nearby galaxy clusters from the Representative XMM-Newton Cluster Structure Survey (REXCESS). The objects are selected only in X-ray luminosity, optimally sampling the cluster luminosity function. Temperatures range from 2 to 9 keV, and there is no bias toward any particular morphological type. To reduce measurement scatter we extract pertinent values in an aperture corresponding to R500, estimated using the tight correlation between (the product of gas mass and temperature) and total mass. The data exhibit power law relations between bolometric X-ray luminosity and temperature, and total mass, all with slopes that are significantly steeper than self-similar expectations. We examine the possible causes for the steepening, finding that structural variations have little effect and that the primary driver appears to be a systematic variation of the gas content with mass. Scatter about the relations is dominated in all cases by the presence of cool cores. The natural logarithmic scatter about the raw X-ray luminosity-temperature relation is about 70 per cent, and about the X-ray luminosity- relation it is 40 per?cent. Systems with more morphological substructure show similar scatter about scaling relations than clusters with less substructure, due to the preponderance of cool core systems in the regular cluster subsample. Cool core and morphologically disturbed systems occupy distinct regions in the residual space with respect to the best fitting mean relation, the former lying systematically at the high luminosity side, the latter lying systematically at the low luminosity side. Simple exclusion of the central regions serves to reduce the scatter about the scaling relations by more than a factor of two. The scatter reduces by a similar amount with the use of the central gas density as a third parameter. Using as a total mass proxy, we derive a Malmquist bias-corrected local luminosity-mass relation and compare with other recent determinations. Our results indicate that luminosity can be a reliable mass proxy with controllable scatter, which has important implications for upcoming all-sky cluster surveys, such as those to be undertaken with Planck and eROSITA, and ultimately for the use of the cluster population for cosmological purposes.<br/

    Merging clusters of galaxies observed with XMM-Newton

    Full text link
    We present results from the XMM-Newton observations of our ongoing program on merging clusters. To date three clusters have been observed, covering the temporal sequence from early to late stage mergers: A1750, A2065 and A3921. Using spatially-resolved spectroscopy of discrete regions, hardness ratio and temperature maps, we show that all three clusters display a complex temperature structure. In the case of A1750, a double cluster, we argue that the observed temperature structure is not only related to the ongoing merger but also to previous merger events. A2065 seems an excellent example of a `compact merger', i.e. when the centres of the two clusters have just started to interact, producing a shock in the ICM. Using comparisons with numerical simulations and complementary optical data, the highly complex temperature structure evident in A3921 is interpreted as an off-axis merger between two unequal mass components. These results illustrate the complex physics of merger events. The relaxation time can be larger than the typical time between merger events, so that the present day morphology of clusters depends not only on on-going interaction but also on the more ancient formation history.Comment: 10 pages, 3 figures. Use elsart.cls. Accepted for publication in Advances in Space Research. A version with full resolution figures can be found at http://www.star.bris.ac.uk/elena/cospar_3clusters.pd

    Magnetic Fields, Relativistic Particles, and Shock Waves in Cluster Outskirts

    Full text link
    It is only now, with low-frequency radio telescopes, long exposures with high-resolution X-ray satellites and gamma-ray telescopes, that we are beginning to learn about the physics in the periphery of galaxy clusters. In the coming years, Sunyaev-Zeldovich telescopes are going to deliver further great insights into the plasma physics of these special regions in the Universe. The last years have already shown tremendous progress with detections of shocks, estimates of magnetic field strengths and constraints on the particle acceleration efficiency. X-ray observations have revealed shock fronts in cluster outskirts which have allowed inferences about the microphysical structure of shocks fronts in such extreme environments. The best indications for magnetic fields and relativistic particles in cluster outskirts come from observations of so-called radio relics, which are megaparsec-sized regions of radio emission from the edges of galaxy clusters. As these are difficult to detect due to their low surface brightness, only few of these objects are known. But they have provided unprecedented evidence for the acceleration of relativistic particles at shock fronts and the existence of muG strength fields as far out as the virial radius of clusters. In this review we summarise the observational and theoretical state of our knowledge of magnetic fields, relativistic particles and shocks in cluster outskirts.Comment: 34 pages, to be published in Space Science Review

    NIKA2: a mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z < 0:2). For high redshift clusters ( z > 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2

    Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources

    Get PDF
    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > 10310^3 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples

    Planck intermediate results. VIII. Filaments between interacting clusters

    Get PDF
    About half of the baryons of the Universe are expected to be in the form of filaments of hot and low density intergalactic medium. Most of these baryons remain undetected even by the most advanced X-ray observatories which are limited in sensitivity to the diffuse low density medium. The Planck satellite has provided hundreds of detections of the hot gas in clusters of galaxies via the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for studying extended low density media through the tSZ effect. In this paper we use the Planck data to search for signatures of a fraction of these missing baryons between pairs of galaxy clusters. Cluster pairs are good candidates for searching for the hotter and denser phase of the intergalactic medium (which is more easily observed through the SZ effect). Using an X-ray catalogue of clusters and the Planck data, we select physical pairs of clusters as candidates. Using the Planck data we construct a local map of the tSZ effect centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray maps of these pairs. After having modelled and subtracted the tSZ effect and X-ray emission for each cluster in the pair we study the residuals on both the SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a significant tSZ effect signal in the intercluster region beyond the virial radii of the clusters. A joint X-ray SZ analysis allows us to constrain the temperature and density of this intercluster medium. We obtain a temperature of kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&

    Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV

    Get PDF
    We present measurements of the charge balance function, from the charged particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au collisions at 200 GeV using the STAR detector at RHIC. We observe that the balance function is boost-invariant within the pseudorapidity coverage [-1.3, 1.3]. The balance function properly scaled by the width of the observed pseudorapidity window does not depend on the position or size of the pseudorapidity window. This scaling property also holds for particles in different transverse momentum ranges. In addition, we find that the width of the balance function decreases monotonically with increasing transverse momentum for all centrality classes.Comment: 6 pages, 3 figure
    corecore